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24.1 Martingale Convergence

Recall Dubins’ inequality from previous lecture: for a non-negative supermartingale
Sn, n = 0, 1, 2, . . . and 0 < a < b :

P(Sn upcrosses [a, b] ≥ k times) ≤
(a

b

)k

(24.1)

As a corollary we get that

Corollary 24.1 P(Sn converges to a finite limit) = 1, Sn
a.s.

−→ S∞, and Fatou’s lemma
yields E(S∞) ≤ E(S0) < ∞.

We can get a little stronger result ([1], Chapter 4, 2.10) and have the same convergence
with non-negativity substituted by supn E(S−

n ) < ∞. Intuitively the condition tells
us that we can’t go down too much.

24.2 Example

If we look at non-negative integer-valued processes such as random walks or branching
processes, then the process must reach zero almost surely. For example consider
S0 = k > 0 and Sn = X1 + . . . + Xn where Xi are i.i.d with E(X) < ∞. Let
T0 = inf{n : Sn ≤ 0} and consider Sn∧T0

. In order to avoid overshooting and
guarantee ST0

= 0 (on T0 < ∞), assume that Xi ∈ {−1, 0, 1, . . .}. We also want to
exclude an always constant process, so assume P(X = 0) < 1. The Strong Law of
Large Numbers tells us that Sn/n

a.s.

−→ E(X1). Set E(X) = 0 which makes Sn∧T0
a

non-negative super-martingale, hence it has to converge a.s. On the event {T0 = ∞},
however, we must have Xi 6= 0 i.o. and hence we can’t have convergence on this set.
The same holds true for a branching process at critical value.
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24.3 More on L2 Convergence

Consider an L2-bounded martingale (Mn,Fn) (that is, with supn E(M2
n) < ∞). Recall

that Mn has orthogonal increments, hence Mn converges in L2 to some limit M∞:

Mn
L
2

−→ M∞ and EM2
∞ = sup

n

EM2
n (24.2)

However now we can prove even more - a.s. convergence. There are two ways to prove
it. One is to use a version of Kolmogorov’s inequality; the other one is to use the
martingale convergence theorem and use our control over second moment:

sup
n

(EM−
n ) ≤ sup

n

E|Mn| ≤ sup
n

√

EM2
n ≤

√

sup
n

EM2
n < ∞.

Claim 24.2
Mn = E(M∞|Fn) (24.3)

In other words, every L2-bounded martingale is a sequence of conditional expectations
of some target r.v. M∞.

Proof: We know that Mn = E(MN |Fn) for N > n and we have Mn
L
2

−→ M∞. We
want to show that (for E = Fn),

E(Mn|E)
L
2

−→ E(M∞|E).

The property of E(·|E) that gives it to us is continuity of E(·|E) when viewed as an
operator on L2. It’s a simple fact from functional analysis. This operator is linear
and also bounded since it’s norm is 1:

E(X|F)2 ≤ E(X|F)2 + E(X − E(X|F ))2 = E(X2)

and 1 is achieved for constant X.

Note that the above result is dominated by Doob’s result on martingale convergence
which follows from a Kolmogorov-like inequality as mentioned above. The key fact
obtained from it is

E

(

(

sup
n

Mn

)2
)

≤ 4 sup
n

(EM2
n)

A similar inequality exists for general Lp for p > 1; however for p = 1 a constant
blows up and analysis gets more difficult.
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24.4 Convergence in L1

Consider a sequence Mn = E(M∞|Fn) for some M∞ ∈ L1 and filtration Fn. Such
a process is a martingale. Let’s ask a question of which martingales have this form
(“closed in L1”).

Theorem 24.3 Given probability space (Ω,F , P) and filtration Fn the following are
equivalent:

1. There exists M∞ ∈ L1 such that Mn = E(M∞|Fn);

2. (Mn,Fn) is a martingale which converges in L1 (and it converges to M∞); and

3. (Mn,Fn) is a uniformly integrable martingale.

Let’s define uniform integrability, which is somewhat similar to the concept of tight-
ness encountered earlier.

Definition 24.4 A collection of r.v. (Xi, i ∈ I) is uniformly integrable if

lim
x→∞

sup
i

E(|Xi|1|Xi|>x) = 0.

See text ([1], 4.5) for the proof of the following properties of uniform integrability
which is the last word on swapping expectations and limits:

Theorem 24.5 If Xn
a.s.

−→ X and (Xn) is uniformly integrable then:

1. E|X| < ∞; and

2. Xn
L
1

−→ X and hence E(Xn) → E(X).

Moreover if Xn ≥ 0, the converse is true:

E

(

lim
n

Xn

)

= lim E(Xn) ⇔ (Xn)is uniformly integrable. (24.4)

Note that if Xn converges in L1 it is automatically uniformly integrable.

Proof: (of Thm. 24.3)

1. (1) ⇒ (3) Follows from a more general fact (see [1], Chapter 4, (5.1)): Given
(Ω,F0, P) and an X ∈ L1, the family {E(X|F) : F is a sub-σ-field ⊂ F0} is
uniformly integrable.
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2. (3) ⇒ (2) Since Mn converges a.s. and is uniformly integrable, it converges in
L1.

3. (2) ⇒ (1) Treat the same way as L2 case and use continuity of E(·|F) as an
operator.

To show that uniform integrability is essential, consider simple random walk Sn

started at 1 and stopped at first zero (P(T0 < ∞) = 1). Hence Sn∧T0
= 0 for

n ≥ T0 and Sn∧T0

a.s.

−→ 0. However E(Sn∧T0
) = 1 6= E(limn→∞ Sn∧T0

) = 0. Hence we
can conclude that Sn∧T0

is not uniformly integrable and does not converge in L1.

24.5 Reversed Martingales

These arise as E(X|Gn) where Gn is a decreasing rather than increasing sequence of
σ−fields. Sometimes they are also called backwards martingales.

Example 24.6 If Gn = σ(Xn, Xn+1, . . .), then Gn ↓ T (X1, X2, . . .).

In general if Gn ↓ G∞ :=
⋂

n Gn then for X ∈ L1 the following convergence is true in
L1 and a.s. sense:

E(X|Gn) −→ E(X|G∞). (24.5)

The proof is by using the upcrossing inequality.

Definition 24.7 A sequence of random variables Xi is called exchangeable if for all
n and any permutation π on n objects we have:

(X1, . . . , Xn)
d

= (Xπ(1), . . . , Xπ(n)).

The condition of exchangeability is stronger than the assumption of identical dis-
tribution of the individual random variables in the sequence, and weaker than the
assumption that they are independent and identically distributed.

Example 24.8 1. All Xi’s are i.i.d.

2. Pick F a random probability distribution on R. Pick Xi as i.i.d. with distribution
F .
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A famous converse to a previous example is the following theorem:

Theorem 24.9 (de Finetti) Every exchangeable sequence of real-valued r.v. has
the same distribution as some mixture of i.i.d.

Let En be the σ-field generated by events which are invariant under permutations that
leave n + 1, n + 2, . . . fixed. Observe that En ↓ as n ↑, hence En ↓ E∞ which is called
the exchangeable σ-field. Note that E∞ is richer than the tail-field (in other words,
T (X1, X2, . . .) ⊆ E∞).

For example, consider Sn = X1+. . .+Xn for exchangeable Xi. Exchangeability yields

E(X1|En) = E(X2|En) = . . . = E(Xn|En)

Adding up all terms and dividing by n gives us

E(Sn|En)

n
= E(X1|En) ⇒

Sn

n

since Sn is En-measurable. Hence we obtain a new proof of the SLLN:

Sn

n
a.s.

−→ E(X1|E∞) = E(X1)

since E∞ is trivial by Hewitt-Savage 0-1 law.
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