Lecture 24 : Li-convergence and reversed MG

STAT?205 Lecturer: Jim Pitman Scribe: Alex Skorokhod <skor@math>

References: [1], sections 4.4, 4.5 and 4.6.

24.1 Martingale Convergence

Recall Dubins’ inequality from previous lecture: for a non-negative supermartingale
Sp,m=20,1,2,...and 0<a<b:

k
P(S,, upcrosses [a, b] > k times) < (%) (24.1)
As a corollary we get that

Corollary 24.1 P(S, converges to a finite limit) = 1, S,, —> S, and Fatou’s lemma
yields E(Sy) < E(Sp) < oo.

We can get a little stronger result ([1], Chapter 4, 2.10) and have the same convergence
with non-negativity substituted by sup, E(S,) < oco. Intuitively the condition tells
us that we can’t go down too much.

24.2 Example

If we look at non-negative integer-valued processes such as random walks or branching
processes, then the process must reach zero almost surely. For example consider
So =k >0and S, = X; + ...+ X, where X; are i.i.d with E(X) < oco. Let
Ty = inf{n : S, < 0} and consider S,,z,. In order to avoid overshooting and
guarantee Sp, = 0 (on Ty < 00), assume that X; € {—1,0,1,...}. We also want to
exclude an always constant process, so assume P(X = 0) < 1. The Strong Law of
Large Numbers tells us that S, /n = E(X;). Set E(X) = 0 which makes S,ar, a
non-negative super-martingale, hence it has to converge a.s. On the event {Ty = oo},
however, we must have X; # 0 i.o. and hence we can’t have convergence on this set.
The same holds true for a branching process at critical value.
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24.3 More on L? Convergence

Consider an L?-bounded martingale (M,,, F,,) (that is, with sup,, E(M?) < c0). Recall
that M,, has orthogonal increments, hence M, converges in L? to some limit M:

M, -5 M., and EM2, = sup EM2 (24.2)

However now we can prove even more - a.s. convergence. There are two ways to prove
it. One is to use a version of Kolmogorov’s inequality; the other one is to use the
martingale convergence theorem and use our control over second moment:

n
n n n

sup(EM,) < supE|M,| < sup /EM? < [supEM? < occ.

Claim 24.2
M, = E(M.|F,) (24.3)

In other words, every L?-bounded martingale is a sequence of conditional expectations
of some target r.v. M.

Proof: We know that M, = E(My|F,) for N > n and we have M, LN M. We
want to show that (for &€ = F,,),

E(M,|€) 25 E(M.|E).

The property of E(-|€) that gives it to us is continuity of E(-|€) when viewed as an
operator on L2, It’s a simple fact from functional analysis. This operator is linear
and also bounded since it’s norm is 1:

E(X|F)? <E(X|F)?+E(X — E(X|F))? =E(X?)

and 1 is achieved for constant X. ]

Note that the above result is dominated by Doob’s result on martingale convergence
which follows from a Kolmogorov-like inequality as mentioned above. The key fact

obtained from it is ,
E ( (sup Mn) ) < 4sup(EM?)

A similar inequality exists for general LP for p > 1; however for p = 1 a constant
blows up and analysis gets more difficult.
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24.4 Convergence in L!

Consider a sequence M, = E(My|F,) for some M, € L' and filtration F,. Such
a process is a martingale. Let’s ask a question of which martingales have this form
(“closed in L'7).

Theorem 24.3 Given probability space (2, F,P) and filtration F, the following are
equivalent:

1. There exists My, € L' such that M, = E(My|F,);
2. (M,, F,) is a martingale which converges in L* (and it converges to M, ); and

3. (M,,Fy,) is a uniformly integrable martingale.

Let’s define uniform integrability, which is somewhat similar to the concept of tight-
ness encountered earlier.

Definition 24.4 A collection of r.v. (X;,i € I) is uniformly integrable if
lim sup E(|X;[1)x,/>2) = 0.

Tr—00 i

See text ([1], 4.5) for the proof of the following properties of uniform integrability
which is the last word on swapping expectations and limits:

Theorem 24.5 If X,, — X and (X,,) is uniformly integrable then:
1. E|X| < oo; and
2. X, %, X and hence E(X,) — E(X).

Moreover if X,, > 0, the converse is true:

E(lim Xn> =lmE(X,) < (X,)is uniformly integrable. (24.4)

Note that if X,, converges in L! it is automatically uniformly integrable.

Proof: (of Thm. 24.3)

1. (1) = (3) Follows from a more general fact (see [1], Chapter 4, (5.1)): Given
(Q, Fo,P) and an X € L', the family {E(X|F) : F is a sub-o-field C Fo} is
uniformly integrable.
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2. (3) = (2) Since M, converges a.s. and is uniformly integrable, it converges in
L!.

3. (2) = (1) Treat the same way as L? case and use continuity of E(-|F) as an
operator.

To show that uniform integrability is essential, consider simple random walk S,
started at 1 and stopped at first zero (P(Ty < oo) = 1). Hence S,ar, = 0 for
n > Ty and S,a1, — 0. However E(Suar,) = 1 # E(lim,, oo Syazy) = 0. Hence we
can conclude that S,,7, is not uniformly integrable and does not converge in L.

24.5 Reversed Martingales

These arise as E(X|G,) where G, is a decreasing rather than increasing sequence of
o—fields. Sometimes they are also called backwards martingales.

Example 24.6 If G, = o(X,,, Xp11,-..), then G, | T(X1, Xo,...).

In general if G, | G :=[), Gn then for X € L' the following convergence is true in
L! and a.s. sense:

E(X[Gn) — E(X|Gw). (24.5)
The proof is by using the upcrossing inequality.

Definition 24.7 A sequence of random variables X; is called exchangeable if for all
n and any permutation ™ on n objects we have:

(X1, X)) = (X1 - s X))

The condition of exchangeability is stronger than the assumption of identical dis-
tribution of the individual random variables in the sequence, and weaker than the
assumption that they are independent and identically distributed.

Example 24.8 1. All X;’s are i.i.d.

2. Pick F' a random probability distribution on R. Pick X; as i.1.d. with distribution
F.
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A famous converse to a previous example is the following theorem:

Theorem 24.9 (de Finetti) Fuvery exchangeable sequence of real-valued r.v. has
the same distribution as some mizture of i.i.d.

Let &, be the o-field generated by events which are invariant under permutations that
leave n + 1,n + 2, ... fixed. Observe that &, | as n T, hence &, | £ which is called
the ezchangeable o-field. Note that £, is richer than the tail-field (in other words,
T(X1, X, ...) C&).

For example, consider S, = X;+...+ X, for exchangeable X;. Exchangeability yields

E(X,|E,) = E(X|E,) = ... = E(X,|E,)

Adding up all terms and dividing by n gives us

E(SulE:) _ g

S
(X1l&n) = —
n n

since S,, is &,-measurable. Hence we obtain a new proof of the SLLN:

Sn a.s.

since & is trivial by Hewitt-Savage 0-1 law.
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